
𝐿𝑇 𝑋 command declarations here.𝐴
𝐸

AERSP/ME 597 - Machine Learning in Aerosapce Engineering

Gaussian Process Regression: Bayesian Optimization

Instructor: Daning Huang

In [1]:

TODAY: Gaussian Process Regression - V
Bayesian Optimization

Surrogates
Acquisition function
Inner optimization
Updating schemes

References
Engineering Design via Surrogate Modelling: A Practical Guide, by A. Forrester, A. Sobester, A. Keane

An example

from __future__ import division
from warnings import filterwarnings
filterwarnings('ignore')

import random
import numpy as np
import scipy as scp
import scipy.stats
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline

Introduction

The problem
The objective function is expensive to compute when it is, for example, the lift-to-drag ratio of an aircraft wing using a computational fluid
dynamics (CFD) solver, or nonlinear deformation of composite structure using a finite element (FE) solver. The objective function is
impossible to compute when it is, for example, data obtained from experiments.

The optimization problem is written formally as,

where is the vector of design variables, and are the aggregated equality and inequality constraint functions, respectively. The state
variables are those implicitly involved in the evaluation of the objective and constraint functions. Examples of are the flow variables in a
CFD solver or the displacement field in the structural FE solver.

In above cases, in order to solve the optimization problem during a practical time period, the number of evaluation of the objective function
has to be limited in the optimization algorithm. There are two limitations on the optimization algorithm:

arg min𝐝

s. t.

𝐽(𝐝;𝐔)

(𝐝;𝐔) = 0𝐜𝐸

(𝐝;𝐔) ≥ 0𝐜𝐼
𝐝 𝐜𝐸 𝐜𝐼
𝐔 𝐔

The design space cannot be explored by carrying out numerous direct evaluation of the objective function;
The derivative of the objective function w.r.t. design variables cannot be computed using the finite difference approach.

These limitations prevent the direct application of any gradient-free or gradient-based algorithms to the optimization problem.

Surrogate-based optimization
To overcome the limitations, one approach is to use surrogate-based optimization (SBO). The SBO algorithms typically contain two key
ingredients, a surrogate model and an acquisition function. The surrogate model is employed to approximate the expensive objective
function. Since the surrogate is computationally efficient, it allows for fast evaluation of approximated objective function as well as its
derivative w.r.t. the design variables. The acquisition function is a criterion for selecting the points in the design space that is potentially a
solution to the optimization problem. The acquisition function is designed to take into account of both exploration, i.e. sampling from areas
of high uncertainty, and exploitation, i.e. sampling from areas likely to contain the minimizer of the objective function.

The general procedure of SBO is as follows,

1. [Initialize dataset] Generate a sample data set by evaluating the objective and constraint functions
 at a few sample points in the design space.

2. [Initialize surrogate] Generate surrogates , , using the sample data set .
3. [Inner Optimization] Find the design point by solving an optimization problem that consists of the surrogates and an acquisition

function .

4. [Acquire new data] Evaluate the objective and constraint functions at the new design point .
5. [Update surrogate] Update the surrogate using the sample data set augmented with the new design point

.
6. [Loop] Repeat steps 3-5 until the convergence or stopping conditions are reached.

One category of SBO is the one-shot approach, which only contains steps 1-4. In the one-shot approach, the acquisition function is the
surrogate itself. The issue is that the initial sample set does not necessarily represent well the distribution of the objective function over the
whole design space. As a result, the optimal solution found by the algorithm may be far off from the true value of objective function. The
other category of SBO is the updating approach that, of course, contains all the six steps. This is the category where the Bayesian
optimization lies.

 = {(, , ,)𝐝𝑖 𝐽𝑖 𝐜𝐸𝑖 𝐜𝐼𝑖 }
𝑁𝑠
𝑖=1

, ,𝐽𝑖 𝐜𝐸𝑖 𝐜𝐼𝑖 𝐝𝑖
(𝐝)𝐽 𝑠𝑢𝑟 (𝐝)𝐜𝑠𝑢𝑟𝐸 (𝐝)𝐜𝑠𝑢𝑟𝐼

𝐝∗

𝐶

arg min𝐝

s. t.

𝐶(, 𝐝)𝐽 𝑠𝑢𝑟

(𝐝) = 0𝐜𝑠𝑢𝑟𝐸

(𝐝) ≥ 0𝐜𝑠𝑢𝑟𝐼
, ,𝐽 ∗ 𝐜∗𝐸 𝐜

∗
𝐼 𝐝∗

= ∪ {(, , ,)}∗ 𝐝∗ 𝐽 ∗ 𝐜∗𝐸 𝐜
∗
𝐼

Bayesian optimization

Concepts
Bayesian optimization (BO) is essentially the six-step SBO procedure with a statistical interpretation. Adapted from wikipedia
(https://en.wikipedia.org/wiki/Bayesian_optimization): The expensive function is treated as a random function with a prior distribution, which
captures the beliefs about the behavior of the function. The prior distribution is updated using the data set to form the the posterior
distribution over the objective function. The posterior distribution is used to construct an acquisition function that determines the next
design point.

The two precursors of BO are Kushner1964 (http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1431594) and
Mockus1975 (https://link.springer.com/chapter/10.1007%2F978-3-662-38527-2_55). A good review of BO is provided in Brochu2010
(https://arxiv.org/abs/1012.2599). The Gaussian process regression (GPR) model is a popular choice for the surrogate model in BO. Some
outstanding the GPR-based BO algorithms include, but not limited to,

1. BayesOpt: code (https://github.com/rmcantin/bayesopt), doc (https://rmcantin.bitbucket.io/html/), paper
(https://arxiv.org/abs/1405.7430).

2. HIPS/spearmint: code (https://github.com/HIPS/Spearmint).
3. GPyOpt: code (https://github.com/SheffieldML/GPyOpt), doc (http://sheffieldml.github.io/GPyOpt/)
4. GPflowOpt: code (https://github.com/GPflow/GPflowOpt), doc (https://gpflowopt.readthedocs.io/en/latest/), paper

(https://arxiv.org/abs/1711.03845)

Besides GPR, there are BO algorithms using other surrogate models, such as those in SMAC (code
(http://www.cs.ubc.ca/labs/beta/Projects/SMAC/), paper (https://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf)). A list of
implementations of BO is provided here (https://rmcantin.bitbucket.io/html/relsoft.html). Finally, note that in the engineering community, the
BO algorithm tends to appear by the name efficient global optimization (EGO) algorithm Jones1998
(https://link.springer.com/article/10.1023/A:1008306431147), Sasena2002 (http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.2.4697&rep=rep1&type=pdf).

https://en.wikipedia.org/wiki/Bayesian_optimization
https://en.wikipedia.org/wiki/Bayesian_optimization
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1431594
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1431594
https://link.springer.com/chapter/10.1007%2F978-3-662-38527-2_55
https://link.springer.com/chapter/10.1007%2F978-3-662-38527-2_55
https://arxiv.org/abs/1012.2599
https://arxiv.org/abs/1012.2599
https://github.com/rmcantin/bayesopt
https://github.com/rmcantin/bayesopt
https://rmcantin.bitbucket.io/html/
https://rmcantin.bitbucket.io/html/
https://arxiv.org/abs/1405.7430
https://arxiv.org/abs/1405.7430
https://github.com/HIPS/Spearmint
https://github.com/HIPS/Spearmint
https://github.com/SheffieldML/GPyOpt
https://github.com/SheffieldML/GPyOpt
http://sheffieldml.github.io/GPyOpt/
http://sheffieldml.github.io/GPyOpt/
https://github.com/GPflow/GPflowOpt
https://github.com/GPflow/GPflowOpt
https://gpflowopt.readthedocs.io/en/latest/
https://gpflowopt.readthedocs.io/en/latest/
https://arxiv.org/abs/1711.03845
https://arxiv.org/abs/1711.03845
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
https://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf
https://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf
https://rmcantin.bitbucket.io/html/relsoft.html
https://rmcantin.bitbucket.io/html/relsoft.html
https://link.springer.com/article/10.1023/A:1008306431147
https://link.springer.com/article/10.1023/A:1008306431147
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.4697&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.4697&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.4697&rep=rep1&type=pdf

Surrogate model
In this and the following sections, the discussion will be based on the GPR model. The prediction of the GPR model at a new design point

 follows a Gaussian probability distribution,

where is the predicted value of objective function and is the variance, i.e. the uncertainty of the prediction. The details of GPR models
have been discussed in the previous articles and will be skipped.

Acquisition function for unconstrained optimization
The BO is initially developed for unconstrained problems. Surveys of acquisition functions for such problems can be found in, for example,
[Sasena2002] and Gelbart2015 (https://dash.harvard.edu/handle/1/17467236). There are three basic acquisition functions: (1) Probability
Improvement (PI) [Kushner1964], (2) Expected Improvement (EI) Mockus1994 (https://link.springer.com/article/10.1007/BF01099263),
Lizotte2008 (http://www.csd.uwo.ca/~dlizotte/publications/lizotte_phd_thesis.pdf), (3) Lower Confidence Bound (LCB) Cox1992
(https://ieeexplore.ieee.org/document/271617/). Besides the basic ones, there are acquisition functions based on Thompson Sampling and
the information theory (entropy). In general, the acquisition functions are evolving towards (1) finding multiple candidate points in one
iteration, (2) taking advantage of parallel computing via techniques like asynchronization. Nonetheless, this article will focus only on the three
basic acquisition functions.

PI
Defined as the probability of the new design point to offer a better value of the objective function than the minimum objective function
in the sample data set .

EI
Defined as the expectation of the improvement in the objective function at the new design point. In the literature, EI has been generalized to
include user-specified parameters that control the exploitation-exploration trade-off. The generalized EI is written as,

where and are the user-specified parameters. The classical form of EI is obtained with and . A larger or will put
more weight on the exploration. Note that when and , EI reduces to PI. For a GPR model, the closed-form expression is
available for . For the case ,

where , and and are the cummulative distribution and probability density functions, respectively.

LCB
Defined using the LCB concept,

where the probability of is a constant controlled by the user-specified parameter . A larger will put more weight on the
exploration. The gradient of w.r.t. is straight-forward.

𝐝∗

= () ∼ (𝜇(), ()), or 𝑃 (=) = exp(−)𝐽 ∗ 𝐽 𝑠𝑢𝑟 𝐝∗ 𝐝∗ 𝜎2 𝐝∗ 𝐽 𝑠𝑢𝑟 𝐽 ∗
1

2𝜋𝜎2
⎯ ⎯⎯⎯⎯⎯⎯⎯

√

(− 𝜇𝐽 ∗)2

2𝜎2

𝜇 𝜎2

𝐝∗ 𝐽 ∗

= min{ }𝐽min 𝐽𝑖
() = 𝑃 (≤)𝐶𝑃𝐼 𝐝
∗ 𝐽 ∗ 𝐽min

() = 𝔼[𝐼()], 𝐼(𝐝) = max(0, (− (𝐝) − 𝜁𝜎(𝐝))𝐶𝐸𝐼 𝐝
∗ 𝐝∗ 𝐽min 𝐽 𝑠𝑢𝑟)𝑔

𝜁 ≥ 0 𝑔 ≥ 1 𝜁 = 0 𝑔 = 1 𝑔 𝜁

𝜁 = 0 𝑔 = 0

𝐶𝐸𝐼 𝑔 = 1

()𝐶𝐸𝐼 𝐝
∗ = 𝐼𝑃 (= − 𝜁𝜎 − 𝐼)𝑑𝐼∫

∞

0

𝐽 𝑠𝑢𝑟 𝐽min

= {
𝜎[𝑧Φ(𝑧) + 𝜙(𝑧)],

0,

𝜎 > 0

𝜎 = 0

𝑧 =
−𝜁𝜎−𝜇𝐽min

𝜎
Φ 𝜙

() = 𝜇() − 𝜁𝜎()𝐶𝐿𝐶𝐵 𝐝
∗ 𝐝∗ 𝐝∗

<𝐽 𝑠𝑢𝑟 𝐶𝐿𝐶𝐵 𝜁 > 0 𝜁

𝐶𝐿𝐶𝐵 𝐝

Discussion
The PI acquisition function is purely exploitation, which is undesirable for global optimization. The EI and LCB acquisition functions are high
when approaches the optimum point, or the uncertainty of is high. Therefore, both and achieve a balance between
exploitation and exploration.

The exploitation-exploration trade-off of EI and LCB functions can be further tuned by the cooling scheme. In the cooling scheme, the
optimization starts with a large user-specified parameter for more exploration and gradually decreases the parameter to focus on
exploitation. However, the effect of this scheme is controversial [Sasena2002] and [Brochu2010].

𝐽 ∗ 𝐽 ∗ 𝐶𝐸𝐼 𝐶𝐿𝐶𝐵

https://dash.harvard.edu/handle/1/17467236
https://dash.harvard.edu/handle/1/17467236
https://link.springer.com/article/10.1007/BF01099263
https://link.springer.com/article/10.1007/BF01099263
http://www.csd.uwo.ca/~dlizotte/publications/lizotte_phd_thesis.pdf
http://www.csd.uwo.ca/~dlizotte/publications/lizotte_phd_thesis.pdf
https://ieeexplore.ieee.org/document/271617/
https://ieeexplore.ieee.org/document/271617/

Treatment of constraints
The acquisition functions discussed in the previous section work well with optimization problems without constraints or with box constraints
only. For more complex constraints, there are two types of treatments. The first type is the direct approach. As suggested in [Sasena2002],
the objective and constraint functions are replaced with the surrogates, and the following problem is solved,

Similar to [Sasena2002] is the expected violation (EV) method Audet2000 (https://arc.aiaa.org/doi/pdf/10.2514/6.2000-4891): The
optimization is carried out by filling the design space using latin hypercube sampling and filtering out infeasible candidate points using the
so-called EV function, which takes the same form of EI. Essentially, the constraint surrogates are replaced by .

The other type is the indirect approach, which is further divided into two categories, as discussed in [Gelbart2015]. In the first category, the
constrained problem is converted to an unconstrained one using classical (non-BO) methods. Three representative approaches are,

1. Barrier methods: The iterates are prevented from leaving the feasible region by augmenting the objective function with a barrier function,
which causes the objective to grow to infinity at the boundary of the feasible region.

2. Penalty methods: The objective function is augmented with a penalty term, which still allows the iterates to leave the feasible region but
the iterates become feasible as the penalty increases to infinity in the process of optimization.

3. Augmented Lagrangian methods: The problem is solved via the Lagrangian form augmented with the extra term in penalty methods,
while the Lagrangian multipliers are controlled by the penalty parameters.

In the second category of indirect approach, the acquisition function is modified to incorporate the constraint surrogates. two representative
approaches are,

1. Modified EI methods: An example is the EI with constraints (EIC) Schonlau1998 (https://www.jstor.org/stable/4356058). The EI for the
objective function is augmented to take account of the constraints. In EIC, the EI is multiplied by the probability that the constraints are
satisfied, so that the improvement (almost) only occurs at feasible candidate points.

2. Marginalization integral (MI) methods: Examples are integrated expected conditional improvement Gramacy2011
(https://www.researchgate.net/publication/45913547_Optimization_Under_Unknown_Constraints) and expected volume minimization
Picheny2014 (http://proceedings.mlr.press/v33/picheny14.pdf). The acqusition function at is defined using an integral over the whole
design space,

where is a measure of improvement at given observation at and is the probability that the constraints are satisfied
at . The maximizer of provides the best overall improvement in the design space. The inclusion of encourages picking
candidate points likely to be feasible, while still permits the picking of points in infeasible region that may provide improvement over the
whole design space.

In terms of programming, the direct approach is probably the easiest one to implement. Particularly, the non-BO indirect approaches may be
applied to solve the subproblems derived from the the direct approach, if standard packages for numerical optimization are employed. The
challenge in the MI methods is the integration over the design space, which could be intractable in higher dimensions.

arg min𝐝

s. t.

𝐶(, 𝐝)𝐽
𝑠𝑢𝑟

(𝐝) = 0𝐜𝑠𝑢𝑟𝐸
(𝐝) ≥ 0𝐜𝑠𝑢𝑟𝐼

𝐜𝑠𝑢𝑟 (, 𝐝)𝐶𝐸𝑉 𝐜
𝑠𝑢𝑟

𝐝

(𝐝) = ∫ 𝐹 (𝐝,)ℎ()𝑑𝐶𝑀𝐼 𝐝′ 𝐝′ 𝐝′

𝐹 (𝐝,)𝐝′ 𝐝′ 𝐝 ℎ()𝐝′

𝐝′ 𝐶𝑀𝐼 ℎ(𝐝)

Inner optimization step
With the surrogates and the acquisition function ready, one then proceeds to the inner optimization step.

Choice of algorithm
No matter which algorithm is used, eventually the BO process boils down to a series of non-convex optimization subproblems. It is hard to
find the global optimum of a non-convex function. One choice is to use the evolutionary algorithms, or some so-called global algorithms like
the DIRECT, which are claimed to be able to find the global optimum given sufficiently many iterations. Another choice is to apply the
algorithms for convex optimization, especially the gradient-based ones, with multiple restarts.

Sometimes the latter is preferred. Both choices do not guarantee the convergence to global optimum. The convergence rate of the former is
much slower than the latter, especially in high-dimensional space. In practice, multiple restarts usually result in a good global sub-optimal
point that is sufficient for the engineering purposes. A merit of the former, though, is that some algorithms can handle disjoint feasible
regions.

Gradients
If a gradient-based algorithm is employed in the inner optimization step, it is necessary to compute the gradients of the surrogate and the
acquisition function analytically (or using automatic differentiation), instead of using finite difference. The latter could destabilize the
iterations of gradient descent near some "singularity" points at which the GP model is ill-defined.

https://arc.aiaa.org/doi/pdf/10.2514/6.2000-4891
https://arc.aiaa.org/doi/pdf/10.2514/6.2000-4891
https://www.jstor.org/stable/4356058
https://www.jstor.org/stable/4356058
https://www.researchgate.net/publication/45913547_Optimization_Under_Unknown_Constraints
https://www.researchgate.net/publication/45913547_Optimization_Under_Unknown_Constraints
http://proceedings.mlr.press/v33/picheny14.pdf
http://proceedings.mlr.press/v33/picheny14.pdf

For example, the gradient of w.r.t. for is,

where one needs to know and .

Note that, in the trivial treatment of the multiple output case, the process variances of the output are determined independently.
Therefore, it is sufficient to consider the single output case. The mean and variance at a single point are, respectively,

where and and

The gradient of the mean is computed in a straight-forward manner,

where and are obtained from the regression and mean functions, respectively.

The computation of the gradient of the variance is a little bit more involved,

where . The computation is organized so as to minimize the number of linear solves of the triangular matrices.

𝐶𝐸𝐼 𝐝 𝜎 > 0

= − Φ(𝑧) + [𝜙(𝑧) − 𝜁Φ(𝑧)]
∂𝐶𝐸𝐼
∂𝐝

∂𝜇
∂𝐝

∂𝜎
∂𝐝

∂𝜇
∂𝐝

∂𝜎
∂𝐝

𝜎2
𝑓

𝑚(𝐱)

(𝐱)𝜎2

= (𝐱) + (𝐱)�̄�𝑇 𝐤𝑢 �̄�
𝑇
𝐡𝑢

= − [(𝐱) + [[(𝐱) − [(𝐱)]]𝜎2
𝑓 𝐋−1𝐤𝑢]2 𝐑−𝑇 𝐡𝑢 𝐅𝑇 𝐋−1𝐤𝑢]2

≡ − +𝜎2
𝑓 𝐞𝑇1 𝐞1 𝐞𝑇2 𝐞2

=𝐤𝑢 𝐊𝑠𝑢 =𝐡𝑢 𝐇𝑇𝑢
�̄�

�̄�

= [()]𝐑−1 𝐐𝑇 𝐋−1𝐲𝑠

= [(− 𝐇)]𝐋−𝑇 𝐋−1 𝐲𝑠 �̄�

= +
∂𝑚
∂𝐱

�̄�𝑇
∂𝐤𝑢
∂𝐱

�̄�
𝑇 ∂𝐡𝑢
∂𝐱

∂𝐤𝑢
∂𝐱

∂𝐡𝑢
∂𝐱

∂𝜎2

∂𝐱
= −2 + 2 (−)𝐞𝑇1 𝐋

−1 ∂𝐤𝑢
∂𝐱

𝐞𝑇2 𝐑
−𝑇 ∂𝐡𝑢

∂𝐱
𝐅𝑇𝐋−1 ∂𝐤𝑢

∂𝐱

= −2[(𝐅𝐫 +) + 2𝐋−𝑇 𝐞1]𝑇
∂𝐤𝑢
∂𝐱

𝐫𝑇
∂𝐡𝑢
∂𝐱

𝐫 = 𝐑−1𝐞2

Update surrogate step

Relearn rate of the surrogate
The training of the surrogates could become expensive as the number of samples increases. Also, contrary to intuition, updating the
hyperparameters of the surrogate at every iteration may be unnecessary or even counterproductive Bull2011
(http://www.jmlr.org/papers/v12/bull11a.html). A better strategy is to introduce a relearn rate: Update the sample data set in the surrogate
every iteration, but update the hyperparameters every few iterations.

In practice, the effectiveness of this strategy depends on the quality of the surrogate implementation. If the current hyperparameters are far
off from the converged values, keeping the current hyperparameters would reduce the convergence rate of the whole BO algorithm.

Updating scheme for GPR
Formal, we set up the problem like this: Consider a scenario where a GP model is trained using a large sample data set (points), and now
suppose a few new samples (points,) are to be appended to the data set. The question is, if the existing hyperparameters are
kept, how to recomputing the coefficient matrices in GPR, including , , and , efficiently.

Strictly speaking, the addition of new samples will result in the recomputation of everything, even though the hyperparameters remain the
same: The std and mean of the samples are modified, so is the correlation matrix , and so are the follow-up matrix decompositions.
However, now that , one can assume that the std and mean of the new sample data set are the same as those of the old one. As a
result, the portion of associated with the old sample data set remains the same, and the new coefficient matrices can be computed via
partial matrix decompositions, which could save considerable amount of time - dropping from to .

The new covariance matrix is

where is the matrix associated with the old data set, whose Cholesky factor is known. Matrices and are due to the
new samples. The Cholesky factor of is obtained via the following procedure of partial Cholesky decomposition,

1. Cholesky decomposition: .
2. Linear solve:
3. Assemble the Cholesky factor,

Next, the new matrix is

𝑁

𝑀 𝑀 ≪ 𝑁
𝐋 𝐅 𝐐 𝐑

𝐊

𝑀 ≪ 𝑁
𝐊

𝑂()𝑁3 𝑂()𝑁2

𝐊 = []
𝐊𝑠𝑠

𝐊𝑛𝑠

𝐊𝑠𝑛

𝐊𝑛𝑛
𝐊𝑠𝑠 𝐋𝑠 =𝐊𝑛𝑠 𝐊𝑇𝑠𝑛 𝐊𝑛𝑛

𝐋 𝐊

=𝐊𝑛𝑛 𝐋𝑛𝐋
𝑇
𝑛

=𝐋𝑠𝑛 𝐋−1
𝑠 𝐊𝑠𝑛

𝐋 = []
𝐋𝑠

𝐋𝑇𝑠𝑛

𝐎

𝐋𝑛

𝐅

http://www.jmlr.org/papers/v12/bull11a.html
http://www.jmlr.org/papers/v12/bull11a.html

where block matrix inversion (https://en.wikipedia.org/wiki/Block_matrix#Block_matrix_inversion) is used and is known from
the old model.

Finally, since is known, one can utilize the QR update algorithm (http://www.ams.org/journals/mcom/1976-30-136/S0025-5718-
1976-0431641-8/) to obtain the QR decomposition of . Such algorithm has been implemented in standard packages for scientific
computation, such as scipy.linalg.qr_insert (https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_insert.html).

𝐅 = 𝐇 = [] = []𝐋−1 []
𝐋𝑠

𝐋𝑇𝑠𝑛

𝐎

𝐋𝑛

−1
𝐇𝑠

𝐇𝑛

𝐅𝑠

(−)𝐋−1
𝑛 𝐇𝑛 𝐋𝑇𝑠𝑛𝐅𝑠

=𝐅𝑠 𝐋−1
𝑠 𝐇𝑠

=𝐅𝑠 𝐐𝑠𝐑𝑠
𝐅

Final note
To be fair, it is worth mentioning the existence of adjoint-based optimization. This methodology applies to optimization problems constrained
by partial differential equations (PDEs). One can incorporate the adjoint capability in their PDE solver and enable the direct gradient
calculation of the expensive objective and constraint functions. This approach applies to optimization problems involving CFD and FE
solvers. The adjoint method would be a different (but interesting) story that will be discussed in the next module.

https://en.wikipedia.org/wiki/Block_matrix#Block_matrix_inversion
https://en.wikipedia.org/wiki/Block_matrix#Block_matrix_inversion
http://www.ams.org/journals/mcom/1976-30-136/S0025-5718-1976-0431641-8/
http://www.ams.org/journals/mcom/1976-30-136/S0025-5718-1976-0431641-8/
http://www.ams.org/journals/mcom/1976-30-136/S0025-5718-1976-0431641-8/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_insert.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_insert.html

