
𝐿𝑇 𝑋 command declarations here.𝐴
𝐸

AERSP/ME 597 - Machine Learning in Aerosapce Engineering

Gaussian Process Regression: Variants

Instructor: Daning Huang

In [1]:

TODAY: Gaussian Process Regression - VI
Sparse models
Incorporating gradients
Multi-fidelity models

References
See below

Limitations of GPR

Computational cost
So far, the classical formulation of Gaussian process regression (GPR) is presented. GPR is non-parametric, and thus very flexible - it can
handle any dataset. Moreover, it provides the error estimate of the prediction. However, a non-parametric model like GPR has its inherent
disadvantages. The prediction depends on the dataset. That is, the model does not actually extract any information from the data, and it is
essentially brute-force curve-fitting. Furthermore, the model is dense. The prediction requires accessing all the training data, resulting in
expensive dense matrix operations.

In fact, given training data points, the trainging and prediction stages require and cost, respectively.

During training, every time the length scales change, a new dense matrix inversion (or Cholesky decomposition) has to be carried out. And
during prediction, dense matrix multiplications have to be carried out.

𝑁 𝑂()𝑁3 𝑂()𝑁2

𝐦𝑝

𝐊𝑝

= + (−)𝐦𝑢 𝐊𝑢𝑠𝐊
−1
𝑦 𝐲𝑠 𝐦𝑠

= −𝐊𝑢𝑢 𝐊𝑢𝑠𝐊
−1
𝑦 𝐊𝑠𝑢

Large dataset
There are at least two scenarios for a large dataset:

Case I: A large dataset is available to GPR, for example, when the dataset is acquired from experimental high-frequency measurements,
or acquired from some real-time sensor data with high frame rate.
Case II: A large dataset is needed to approximate a function using GPR, because (1) it has a complex landscape, so that the parameter
space has to be densely sampled; or (2) it has a high-dimensional parameter space, which has to be populated by many samples.

For case I, the dataset is given "as is", and one needs to tackle the large dataset issue directly. For case II, where one actually gets to
choose where and what to sample, the large dataset issue can be avoided by using clever GP variants.

Directly Tackling Large Dataset
In an effort to cure the weaknesses of GPR, a lot of modern variants have been developed. The basic idea is to reduce the effective sample
size in the model. The classification of variants have been well discussed in Chap. 8 of GPML
(http://www.gaussianprocess.org/gpml/chapters/RW.pdf) and Quin2005 (http://www.jmlr.org/papers/volume6/quinonero-
𝑁

from __future__ import division
from warnings import filterwarnings
filterwarnings('ignore')

from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline

http://www.gaussianprocess.org/gpml/chapters/RW.pdf
http://www.gaussianprocess.org/gpml/chapters/RW.pdf
http://www.jmlr.org/papers/volume6/quinonero-candela05a/quinonero-candela05a.pdf
http://www.jmlr.org/papers/volume6/quinonero-candela05a/quinonero-candela05a.pdf

candela05a/quinonero-candela05a.pdf).

The variants can be roughly classified into three types.

Type I: The simplest approach is to choose a partial set of data points (i.e. subset of dataset, SD) to represent the whole dataset, thus
directly reducing . The challenge is the selection of the points. Greedy method might work but is probably suboptimal.
Type II: Replace the covariance matrices by their low-rank approximations,

so that the cost of matrix operations becomes instead of . The major criticism is that the GP becomes degenerate due
to the approximation. A degenerate GP would predict low or zero variance in regions far away from the training dataset, which is not
desirable.
Type III: There is also the variational approach that sparsifies the GPR, but the formulation, implementation, and training of the model
becomes much harder.

𝑁

𝐊 = 𝐕 , 𝐕 ∈𝐕𝑇 ℝ
𝑁×𝑀

𝑂(𝑀𝑁) 𝑂()𝑁2

Type-II example
One low-rank approximation is called the Nyström method. We choose samples from the dataset, and let

which is equivalent to an approximation of the kernel, or subset of regressors (SR),

This way and can be simplified using the matrix inversion lemma

where . However, during prediction, as input points move away from the samples, , and thus the variance, will be
close to zero.

𝑀

≈ =𝐊𝑁 𝐐𝑁 𝐊𝑁𝑀𝐊
−1
𝑀𝐊𝑀𝑁

𝑘(𝐱,) ≈ 𝑄(𝐱,) = 𝑘(𝐱,) 𝑘(,)𝐱′ 𝐱′ 𝐱𝑀 𝐊
−1
𝑀 𝐱𝑀 𝐱

′

𝐦𝑝 𝐊𝑝

𝐦𝑝

𝐊𝑝

= + (−)𝐦𝑢 𝐐𝑢𝑠𝐐
−1
𝑦 𝐲𝑠 𝐦𝑠

= −𝐐𝑢𝑢 𝐐𝑢𝑠𝐐
−1
𝑦 𝐐𝑠𝑢

= + 𝐈𝐐𝑦 𝐐𝑁 𝜎2
𝑛 𝑀 𝐊𝑀𝑁

Comparison of several GP approximations from [Snel2008].

http://www.jmlr.org/papers/volume6/quinonero-candela05a/quinonero-candela05a.pdf

More examples
One interesting approach is the relevance vector machine (RVM) (http://www.miketipping.com/sparsebayes.htm). It applies the idea of
automatic relevance determination (ARD) and finds the training data point that is of the most "relevance" to the model. Subsequently, a
kernel is constructed from these "relevance vectors" to form the final prediction model. Due to the construction of the kernel, RVM is a
degenerate GP, which is criticized in Rasm2005 (http://quinonero.net/Publications/rasmussen05healing.pdf). A fun fact of RVM is that its
2001 version algorithm is patented, and partially discouraged its integration into some mainstream packages. Note that its faster, 2003
version of algorithm is not patented, though. One good Python implementation of RVM can be found here
(https://github.com/AmazaspShumik/sklearn-bayes).

Another approach of the second type is the GPR with pseudo-inputs Snel2008
(https://pdfs.semanticscholar.org/ffe0/dc8492bf9dd1e433fefe60b0dcd9d27152df.pdf), or termed fully independent training conditional
(FITC). This approach determines a set of points from the training data, not necessarily the points in the dataset itself, and generates the
GPR over these "pseudo inputs". The GP is still non-degenerate, but can be significantly reduced, sometimes by two orders of
magnitudes. Yet the prediction is not deteriorated by much.

𝑁

A Unifying View for Sparse GPR (optional)
In Quin2005, a unified framework for sparse GPR (and GPR itself) is proposed, from which the variants discussed above can be derived.

In the framework, one has to differentiate between two types of variables. One is the observed noisy output , the other the underlying
noise-free latent output ,

where is the noise, assumed to be additive and independent. The conditional satisfies . The training data is
considered noisy, i.e. is provided for training. However, the prediction is expected to be noise-free, i.e. is desired. Using a Bayesian
approach, the prediction can be formulated as follows,

where is going to be integrated out, or "marginalized", as it is of no interest to the prediction. The preceeding term is essentially a
normalizing factor and will not be computed explicitly. The remaining term in the integration would satisfy the joint Gaussian
distribution as in previous derivations. This is where the large dense covariance matrix is introduced. This is where the simplification comes
in.

In the framework, a set of inducing points is assumed to be sampled from the GP like and . Therefore, the probability should satisfy,

where . The formulation up to here is still exact. The integration for would result in the regular GPR model.

Now here comes the key assumption in the framework, and are conditionally independent given ,

This means the dependency of on is indirectly induced by . As a reference, the exact forms of the conditionals and the covariance
matrix are,

𝐲

𝐟

𝐲 = 𝐟 + 𝜖

𝜖 ∼ (0,)𝜎2
𝑛 𝐲|𝐟 ∼ (𝐟,)𝜎2

𝑛

𝐲𝑠 𝐟𝑢

𝑝(|)𝐟𝑢 𝐲𝑠 = ∫ 𝑝(, |)𝑑𝐟𝑠 𝐟𝑢 𝐲𝑠 𝐟𝑠

= ∫ 𝑑
𝑝(| ,)𝑝(,)𝐲𝑠 𝐟𝑠 𝐟𝑢 𝐟𝑠 𝐟𝑢

𝑝()𝐲𝑠
𝐟𝑠

= ∫ 𝑝(|)𝑝(,)𝑑
1

𝑝()𝐲𝑠
𝐲𝑠 𝐟𝑠 𝐟𝑠 𝐟𝑢 𝐟𝑠

𝐟𝑠 𝑝()𝐲𝑠
𝑝(,)𝐟𝑠 𝐟𝑢

𝐟𝑖 𝐟𝑠 𝐟𝑢

𝑝(,) = ∫ 𝑝(, ,)𝑑 = ∫ 𝑝(, |)𝑝()𝑑𝐟𝑠 𝐟𝑢 𝐟𝑠 𝐟𝑢 𝐟𝑖 𝐟𝑖 𝐟𝑠 𝐟𝑢 𝐟𝑖 𝐟𝑖 𝐟𝑖

∼ (,)𝐟𝑖 𝐦𝑖 𝐊𝑖𝑖 𝑝(|)𝐟𝑢 𝐲𝑠

𝐟𝑠 𝐟𝑢 𝐟𝑖

𝑝(,) ≈ 𝑞(,) = ∫ 𝑞(|)𝑞(|)𝑝()𝑑𝐟𝑠 𝐟𝑢 𝐟𝑠 𝐟𝑢 𝐟𝑠 𝐟𝑖 𝐟𝑢 𝐟𝑖 𝐟𝑖 𝐟𝑖

𝐟𝑢 𝐟𝑠 𝐟𝑖

{ 𝐊 = []|𝐟𝑠 𝐟𝑖

|𝐟𝑢 𝐟𝑖

∼ (+ (−), −)𝐦𝑠 𝐊𝑠𝑖𝐊
−1
𝑖𝑖 𝐟𝑖 𝐦𝑖 𝐊𝑠𝑠 𝐐𝑠𝑠

∼ (+ (−), −)𝐦𝑢 𝐊𝑢𝑖𝐊
−1
𝑖𝑖 𝐟𝑖 𝐦𝑖 𝐊𝑢𝑢 𝐐𝑢𝑢

𝐊𝑠𝑠

𝐊𝑢𝑠

𝐊𝑠𝑢

𝐊𝑢𝑢

http://www.miketipping.com/sparsebayes.htm
http://www.miketipping.com/sparsebayes.htm
http://quinonero.net/Publications/rasmussen05healing.pdf
http://quinonero.net/Publications/rasmussen05healing.pdf
https://github.com/AmazaspShumik/sklearn-bayes
https://github.com/AmazaspShumik/sklearn-bayes
https://pdfs.semanticscholar.org/ffe0/dc8492bf9dd1e433fefe60b0dcd9d27152df.pdf
https://pdfs.semanticscholar.org/ffe0/dc8492bf9dd1e433fefe60b0dcd9d27152df.pdf

where .=𝐐𝑎𝑏 𝐊𝑎𝑖𝐊
−1
𝑖𝑖 𝐊𝑖𝑏

Approximations (optional)
Under the above framework, all the approximations are actually simplifying or approximating the term . For example, the low-
rank approximation approach, SR, is effectively using,

The covariance matrices are neglected and the "distributions" become deterministic, and hence the term Deterministic Inducing Conditional
(DIC) in the framework. The zero covariance matrix is exactly the cause of the zero error estimation in this type of approach.

Another similar, but better, approximation is called projected process (PP). It essentially employs the following covariance matrix

In regions away from the dataset, the variance no longer becomes zero. However, the PP model does not work well with low-noise dataset,
see [Quin2005] for more discussion.

The approximation of interest in this article, the GPRFITC model, uses the following conditionals,

Note that is exact only when one output is requested. Otherwise, the covariance matrix will be treated like .

−𝐊∗∗ 𝐐∗∗

{ 𝐊 = []|𝐟𝑠 𝐟𝑖

|𝐟𝑢 𝐟𝑖

∼ (+ (−),𝐎)𝐦𝑠 𝐊𝑠𝑖𝐊
−1
𝑖𝑖 𝐟𝑖 𝐦𝑖

∼ (+ (−),𝐎)𝐦𝑢 𝐊𝑢𝑖𝐊
−1
𝑖𝑖 𝐟𝑖 𝐦𝑖

𝐐𝑠𝑠

𝐐𝑢𝑠

𝐐𝑠𝑢

𝐐𝑢𝑢

𝐊 = []
𝐐𝑠𝑠

𝐐𝑢𝑠

𝐐𝑠𝑢

𝐊𝑢𝑢

{ 𝐊 = []|𝐟𝑠 𝐟𝑖

|𝐟𝑢 𝐟𝑖

∼ (+ (−), + 𝑑𝑖𝑎𝑔(−))𝐦𝑠 𝐊𝑠𝑖𝐊
−1
𝑖𝑖 𝐟𝑖 𝐦𝑖 𝐐𝑠𝑠 𝐊𝑠𝑠 𝐐𝑠𝑠

∼ 𝐸𝑥𝑎𝑐𝑡

+ 𝑑𝑖𝑎𝑔(−)𝐐𝑠𝑠 𝐊𝑠𝑠 𝐐𝑠𝑠

𝐐𝑢𝑠

𝐐𝑠𝑢

𝐊𝑢𝑢
𝑞(|)𝐟𝑢 𝐟𝑖 𝑞(|)𝐟𝑠 𝐟𝑖

Appendix: More on GPRFITC (optional)
In GPRFITC, the predictive mean becomes,

where , and . The covariance is,

Note that for the computational cost, is reduced to the number of inducing points.

There are three matrix inversions involved in the prediction. is diagonal, and its inversion is trivial. Inversion inside is done using
Cholesky decomposition (again),

where . Subsequently, inversion of utilizes the decomposition of ,

where Cholesky decomposition is applied in the middle. The last two expressions are then used in the computation of and .

The hyperparameters of GPRFITC can be trained by maximizing the marginal likelihood.

where the matrix inversion is handled as before. For the determinant,

The hyperparameters in include those in regular GPR model: the length scales, process and noise variances, as well as the extra
parameters: the location of the inducing points, the number of which is proportional to the input dimension and number of points. Due the
large number of hyperparameters, the only viable training approach is the gradient-based method. The gradients of can be found in
Appendix C of Snel2008. Nevertheless, the gradients can be automatically handled in a differentiable programming framework, such as
TensorFlow and pyTorch.

𝐦𝑝 = + (+ 𝐕 (−)𝐦𝑢 𝐐𝑢𝑠 𝐐𝑠𝑠)−1 𝐲𝑠 𝐦𝑠

= + (−)𝐦𝑢 𝐊𝑢𝑖𝐌
−1𝐊𝑖𝑠𝐕

−1 𝐲𝑠 𝐦𝑠
𝐕 = 𝑑𝑖𝑎𝑔(−) + 𝐈𝐊𝑠𝑠 𝐐𝑠𝑠 𝜎2

𝑛 𝐌 = +𝐊𝑖𝑖 𝐊𝑖𝑠𝐕
−1𝐊𝑠𝑖

𝐊𝑝 = − (+ 𝐕𝐊𝑢𝑢 𝐐𝑢𝑠 𝐐𝑠𝑠)−1𝐐𝑠𝑢

= − +𝐊𝑢𝑢 𝐐𝑢𝑢 𝐊𝑢𝑖𝐌
−1𝐊𝑖𝑢

𝑁

𝐕 𝐐𝑠𝑠

𝐐𝑠𝑠 = = (𝐊𝑠𝑖𝐊
−1
𝑖𝑖 𝐊𝑖𝑠 𝐊𝑠𝑖 𝐋𝑖𝐋

𝑇
𝑖)−1𝐊𝑖𝑠

≡ �̄�
𝑇

𝑖𝑠�̄�𝑖𝑠
=�̄�𝑖𝑠 𝐋−1

𝑖 𝐊𝑖𝑠 𝐌 𝐊𝑖𝑖

𝐌−1 = (+ = (𝐈 +𝐊𝑖𝑖 𝐊𝑖𝑠𝐕
−1𝐊𝑠𝑖)

−1 𝐋−𝑇𝑖 �̄�𝑖𝑠𝐕
−1�̄�

𝑇

𝑖𝑠)
−1𝐋−1

𝑖

≡ (𝐋−𝑇𝑖 𝐋𝑚𝐋
𝑇
𝑚)−1𝐋−1

𝑖

≡ 𝐋−𝑇𝐋−1

𝐦𝑝 𝐊𝑝

−2 = (− (+ 𝐕 (−) + log | + 𝐕| + 𝑛 log 2𝜋𝐲𝑠 𝐦𝑠)
𝑇 𝐐𝑠𝑠)−1 𝐲𝑠 𝐦𝑠 𝐐𝑠𝑠

log | + 𝐕|𝐐𝑠𝑠 = log |𝐕||𝐈 + |�̄�𝑖𝑠𝐕
−1�̄�

𝑇

𝑖𝑠

= log |𝐕| + 2 log | |𝐋𝑚

Avoiding Large Dataset - I
When there are multiple outputs associated with one input, another way to simplify the GPR is to extract the correlation between the
outputs, leading to multi-variate GPRs.

Recall, univariate (UV) GPR:

Now, multivariate GPR:
𝑓(𝐱) ∼ (𝑚(𝐱), 𝑘(𝐱,))𝐱′

𝐟(𝐱) ∼ (𝐦(𝐱),𝐊(𝐱,))𝐱′

where is a vector mean function and is a matrix covariance function

The probabilistic distribution of a set of points sampled from MVGP is still Gaussian,

𝐦 𝐊

𝐦(𝐱)

𝐊(𝐱,)𝐱
′

= E[𝐟(𝐱)]

= E[(𝐟(𝐱) −𝐦(𝐱))(𝐟() −𝐦()]𝐱
′

𝐱
′)𝑇

 = {𝐗,𝐘}

If we model outputs indepedently using UVGP's,

then the UVGP's are equivalent to a special -dimensional MVGP with mean and variance

𝑚 𝑓𝑖 𝑚

∼ ((𝐱), (𝐱,))𝑓𝑖 𝑚𝑖 𝑘𝑖 𝐱′

𝑚 𝑚

= , =𝐦𝑈

𝑚1

𝑚2

⋯

𝑚𝑚

𝐊𝑈

𝑘1

0

⋮

0

0

𝑘2

⋮

0

⋯

⋯

⋱

⋯

0

0

⋮

𝑘𝑚

Alternatively, suppose

where , , and consists of indepedent UVGP. Then

This leads to a common approach to constructing matrix covariance functions, i.e. making ,
where

𝐠 = 𝐕𝐟

𝐟 ∈ ℝ𝑚 𝐠 ∈ ℝ𝑛 𝐟 𝑚

𝐠 ∼ (𝐕 ,𝐕)𝐦𝑈 𝐊𝑈𝐕
𝑇

𝐊(𝐱,) = (𝐱,)𝐱′ ∑𝑚𝑖=1 𝑘𝑖 𝐱′ 𝐯𝑖𝐯
𝑇
𝑖

∈𝐯𝑖 ℝ
𝑛

In many cases MVGPR requires fewer samples than UVGPRs to achieve a good accuracy; but if there are no limit on the data set size, then
both UVGPR and MVGPR shall converge.

Avoiding Large Dataset - II
Now we turn to the case where one can determine what to sample. Two techniques will be briefly discussed, the gradient-enhanced kriging
and multi-fidelity surrogates. These techniques allow for the use of fewer samples to approximate complex high-dimensional functions, so
that one can avoid the large dataset issue.

Gradient-Enhanced Kriging
This formulation assumes that one can obtain not only the function value, but also the gradient, at a given sample point, without much more
computational cost. This is the case typically when an automatic differentiation implementation of the function is available (i.e. adjoint
module of a CFD solver). The gradient encodes more information about the smoothness of the function into the GPR and helps the latter to
approximate the function better.

There are three flavors:

Indirect: The dataset is augmented with either fictitious points or extra sample points near actual sample points. A GPR model is then
built from the augmented design. Example: SMT (https://smt.readthedocs.io/en/latest/).

Fictitious points: Nearby actual sample points and predicted from the gradient.
Extra points: Nearby actual sample points and directly computed from the target function.

Co-Kriging: Co-Kriging is a version of MVGPR, where the output variables are correlated by introducing more complex correlation
coefficients. The gradients are treated as separate but correlated output variables. More details here
(https://www.emse.fr/~leriche/gradient_MM_acme2017.pdf)
Direct: The GPR is fit such that the GPR gradients at the sample points are the same as the gradients from the dataset. Example:
Dalbey2013 (https://pdfs.semanticscholar.org/3c4a/ad341219280c11a4f0efa9d401b7119c477d.pdf)

https://smt.readthedocs.io/en/latest/
https://smt.readthedocs.io/en/latest/
https://www.emse.fr/~leriche/gradient_MM_acme2017.pdf
https://www.emse.fr/~leriche/gradient_MM_acme2017.pdf
https://pdfs.semanticscholar.org/3c4a/ad341219280c11a4f0efa9d401b7119c477d.pdf
https://pdfs.semanticscholar.org/3c4a/ad341219280c11a4f0efa9d401b7119c477d.pdf

Multi-Fidelity Surrogates
Suppose we have a high-fidelity (HF) model , and a low-fidelity (LF) model . Typically the HF model is
computationally more expensive, but more accurate, than the LF model.

Suppose now we have one dataset of HF data

and a dataset of LF data

Typically , since the HF data is more expensive to obtain.

The idea of multi-fidleity (MF) surrogate is to construct a LF surrogate with the relatively ample LF dataset, and then correct it using the
sparse HF dataset.

where is a multiplicative correction, and is called the discrepancy function.

𝑦 = (𝐱)𝑓𝐻𝐹 𝑦 = (𝐱)𝑓𝐿𝐹

= { ,𝐻𝐹 𝐱𝐻𝐹𝑖 𝑦𝐻𝐹𝑖 }𝑀𝑖=1

= { ,𝐿𝐹 𝐱𝐿𝐹𝑖 𝑦𝐿𝐹𝑖 }𝑁𝑖=1

𝑀 ≪ 𝑁

(𝐱) = 𝜌 (𝐱) + (𝐱)𝑦 ̂ 𝑀𝐹 𝑦 ̂ 𝐿𝐹 𝛿 ̂

𝜌 𝛿 ̂

One can think this as a special case of MVGPR. Two indepedent UVGPR's and are combined linearly to generate
another GPR.

See FG2019 (https://arc.aiaa.org/doi/abs/10.2514/1.J057750) and Park2017 (https://link.springer.com/content/pdf/10.1007/s00158-016-

𝑦 ̂ 𝐿𝐹 (𝐱)𝛿 ̂

In []:

https://arc.aiaa.org/doi/abs/10.2514/1.J057750
https://arc.aiaa.org/doi/abs/10.2514/1.J057750
https://link.springer.com/content/pdf/10.1007/s00158-016-1550-y.pdf
https://link.springer.com/content/pdf/10.1007/s00158-016-1550-y.pdf
https://link.springer.com/content/pdf/10.1007/s00158-016-1550-y.pdf

