2/1/26,9:40 PM

KGP_BO

ETEX command declarations here.

Machine Learning for Engineering

Kernels and Gaussian Processes: Bayesian
Optimization

Instructor: Daning Huang

from __ future__ import division
from warnings import filterwarnings
filterwarnings('ignore')

import random

import numpy as np

import scipy as scp

import scipy.stats

from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline

TODAY: Kernels and GP

Bayesian Optimization

Surrogates

Acquisition function

Inner optimization

Updating schemes

References

e Engineering Design via Surrogate Modelling: A Practical Guide, by A. Forrester, A.

Sobester, A. Keane

An example

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html

1/14

2/1/26,9:40 PM KGP_BO

Number of samples: 4

—— True function
st True minimum
m Sample data
@
2
©
_lll
=)
@
Design variable
Number of samples: 5
—— True function
st True minimum
m Sample data
@
2
©
_lll
=)
@
Thlew -
sample

Design variable

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html 2/14

2/1/26,9:40 PM KGP_BO

Number of samples: 6

—— True function
st True minimum
m Sample data
@
2
©
_lll
=)
@
Design variable
Number of samples: 7
—— True function
st True minimum
m Sample data
@
2
©
_lll
=)
@
Thlew N
sample N

Design variable

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html 3/14

2/1/26,9:40 PM KGP_BO

Number of samples: 8

—— True function
st True minimum
m Sample data
@
2
el
[
3
Ie)
@
TNew
sample
Design variable
Number of samples: 9
—— True function
$¢ True minimum
m Sample data
@
2
="'
L)
3
e
@
TNew
sample

Design variable

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html 4/14

2/1/26,9:40 PM KGP_BO

Number of samples: 10

—— True function
st True minimum
m Sample data
@
=
O
1]
=
O
A Global
minimum
found
Design variable
Introduction

The problem

The objective function is expensive to compute when it is, for example, the lift-to-drag
ratio of an aircraft wing using a computational fluid dynamics (CFD) solver, or nonlinear
deformation of composite structure using a finite element (FE) solver. The objective
function is impossible to compute when it is, for example, data obtained from
experiments.

The optimization problem is written formally as,

argming J(d;U)
s.t. cg(d;U)=0
cr(d;U) >0

where d is the vector of design variables, cg and c; are the aggregated equality and
inequality constraint functions, respectively. The state variables U are those implicitly
involved in the evaluation of the objective and constraint functions. Examples of U are
the flow variables in a CFD solver or the displacement field in the structural FE solver.

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html 5/14

2/1/26,9:40 PM

KGP_BO

In above cases, in order to solve the optimization problem during a practical time period,
the number of evaluation of the objective function has to be limited in the optimization
algorithm. There are two limitations on the optimization algorithm:

e The design space cannot be explored by carrying out numerous direct evaluation of
the objective function;

e The derivative of the objective function w.r.t. design variables cannot be computed
using the finite difference approach.

These limitations prevent the direct application of any gradient-free or gradient-based
algorithms to the optimization problem.

Surrogate-based optimization

To overcome the limitations, one approach is to use surrogate-based optimization

(SBO). The SBO algorithms typically contain two key ingredients, a surrogate model
and an acquisition function. The surrogate model is employed to approximate the
expensive objective function. Since the surrogate is computationally efficient, it allows
for fast evaluation of approximated objective function as well as its derivative w.r.t. the
design variables. The acquisition function is a criterion for selecting the points in the
design space that is potentially a solution to the optimization problem. The acquisition
function is designed to take into account of both exploration, i.e. sampling from areas of
high uncertainty, and exploitation, i.e. sampling from areas likely to contain the
minimizer of the objective function.

The general procedure of SBO is as follows,

1. [Initialize dataset] Generate a sample data set D = {(d;, J;, ¢, cn)}f\;sl by
evaluating the objective and constraint functions J;, cg;, c1; at a few sample points
d; in the design space.

2. [Initialize surrogate] Generate surrogates J**"(d), c3"(d), c¢;*"(d) using the
sample data set D.

3. [Inner Optimization] Find the design point d* by solving an optimization problem
that consists of the surrogates and an acquisition function C.

argming C(J*",d)
s.t. ¢cz"(d)=0
ci"(d) >0

4. [Acquire new data] Evaluate the objective and constraint functions J*, cy, cyat

the new design point d*.
5. [Update surrogate] Update the surrogate using the sample data set augmented
with the new design point D* = D U {(d", J*, ¢}, c})}.

6. [Loop] Repeat steps 3-5 until the convergence or stopping conditions are reached.

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html

6/14

2/1/26,9:40 PM

KGP_BO

One category of SBO is the one-shot approach, which only contains steps 1-4. In the
one-shot approach, the acquisition function is the surrogate itself. The issue is that the
initial sample set does not necessarily represent well the distribution of the objective
function over the whole design space. As a result, the optimal solution found by the
algorithm may be far off from the true value of objective function. The other category of
SBO is the updating approach that, of course, contains all the six steps. This is the
category where the Bayesian optimization lies.

Bayesian optimization

Concepts

Bayesian optimization (BO) is essentially the six-step SBO procedure with a statistical
interpretation. Adapted from wikipedia: The expensive function is treated as a random
function with a prior distribution, which captures the beliefs about the behavior of the
function. The prior distribution is updated using the data set to form the the posterior
distribution over the objective function. The posterior distribution is used to construct an
acquisition function that determines the next design point.

The two precursors of BO are Kushner1964 and Mockus1975. A good review of BO is
provided in Brochu2010. The Gaussian process regression (GPR) model is a popular
choice for the surrogate model in BO. Some outstanding the GPR-based BO algorithms
include, but not limited to,

1. BayesOpt: code, doc, paper.
2. HIPS/spearmint: code.

3. GPyOpt: code, doc

4. GPflowOpt: code, doc, paper

Besides GPR, there are BO algorithms using other surrogate models, such as those in
SMAC (code, paper). A list of implementations of BO is provided here. Finally, note that
in the engineering community, the BO algorithm tends to appear by the name efficient
global optimization (EGO) algorithm Jones1998, Sasena2002.

Next, the key components of BO, the surrogate model and the acquisition function, as
well as the treatment of constraints will be discussed.

Surrogate model

In this and the following sections, the discussion will be based on the GPR model. The
prediction of the GPR model at a new design point d* follows a Gaussian probability
distribution,

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html

7/14

https://en.wikipedia.org/wiki/Bayesian_optimization
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1431594
https://link.springer.com/chapter/10.1007%2F978-3-662-38527-2_55
https://arxiv.org/abs/1012.2599
https://github.com/rmcantin/bayesopt
https://rmcantin.bitbucket.io/html/
https://arxiv.org/abs/1405.7430
https://github.com/HIPS/Spearmint
https://github.com/SheffieldML/GPyOpt
http://sheffieldml.github.io/GPyOpt/
https://github.com/GPflow/GPflowOpt
https://gpflowopt.readthedocs.io/en/latest/
https://arxiv.org/abs/1711.03845
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
https://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf
https://rmcantin.bitbucket.io/html/relsoft.html
https://link.springer.com/article/10.1023/A:1008306431147
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.4697&rep=rep1&type=pdf

2/1/26,9:40 PM

KGP_BO

1 J* —
JT=Jm(d) ~ N(u(d"),0*(d")), or P(JM=J") = Voo L <_(20—:)
O

where pu is the predicted value of objective function and o? is the variance, i.e. the
uncertainty of the prediction. The details of GPR models have been discussed in the
previous articles and will be skipped.

Acquisition function for unconstrained optimization

The BO is initially developed for unconstrained problems. Surveys of acquisition
functions for such problems can be found in, for example, [Sasena2002] and
Gelbart2015. There are three basic acquisition functions: (1) Probability Improvement
(P1) [Kushner1964], (2) Expected Improvement (EI) Mockus1994, Lizotte2008, (3) Lower
Confidence Bound (LCB) Cox1992. Besides the basic ones, there are acquisition
functions based on Thompson Sampling and the information theory (entropy). In
general, the acquisition functions are evolving towards (1) finding multiple candidate
points in one iteration, (2) taking advantage of parallel computing via techniques like
asynchronization. Nonetheless, this article will focus only on the three basic acquisition
functions.

Pl

Defined as the probability of the new design point d* to offer a better value of the

objective function J* than the minimum objective function in the sample data set

Cpr(d*) = P(J* < Juin)

El

Defined as the expectation of the improvement in the objective function at the new
design point. In the literature, El has been generalized to include user-specified
parameters that control the exploitation-exploration trade-off. The generalized El is

written as,
Cpr(d") =E[I(d")], I(d)=max(0, (Jmin — J*"(d) — (o(d)))

where ¢ > 0 and g > 1 are the user-specified parameters. The classical form of El is
obtained with { = 0 and g = 1. A larger g or ¢ will put more weight on the exploration.
Note that when ¢ = 0 and g = 0, El reduces to PI. For a GPR model, the closed-form
expression is available for C'gr. For the case g = 1,

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html

8/14

https://dash.harvard.edu/handle/1/17467236
https://link.springer.com/article/10.1007/BF01099263
http://www.csd.uwo.ca/~dlizotte/publications/lizotte_phd_thesis.pdf
https://ieeexplore.ieee.org/document/271617/

2/1/26,9:40 PM

KGP_BO

Crr(d") = / [P(J™ = Juin — Co— T)dI
0

{ a[z®(2) + ¢(2)], o>0
0

) c=0

Jmin_Co'_,U

where z = ————, and ® and ¢ are the cummulative distribution and probability

density functions, respectively.

LCB

Defined using the LCB concept,
Crep(d®) = p(d*) — o(d”)

where the probability of J**" < C,¢pg is a constant controlled by the user-specified
parameter ¢ > 0. A larger ¢ will put more weight on the exploration. The gradient of
Crcp w.rt. d is straight-forward.

Discussion

The Pl acquisition function is purely exploitation, which is undesirable for global
optimization. The El and LCB acquisition functions are high when J* approaches the
optimum point, or the uncertainty of J* is high. Therefore, both Cgr and Cop achieve
a balance between exploitation and exploration.

The exploitation-exploration trade-off of El and LCB functions can be further tuned by
the cooling scheme. In the cooling scheme, the optimization starts with a large user-
specified parameter for more exploration and gradually decreases the parameter to
focus on exploitation. However, the effect of this scheme is controversial [Sasena2002]
and [Brochu2010].

Treatment of constraints

The acquisition functions discussed in the previous section work well with optimization
problems without constraints or with box constraints only. For more complex constraints,
there are two types of treatments. The first type is the direct approach. As suggested in
[Sasena2002], the objective and constraint functions are replaced with the surrogates,
and the following problem is solved,

argming C(J*"",d)
s.t. ¢z’ (d)=0
ci"(d) >0

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html 9/14

2/1/26,9:40 PM KGP_BO

Similar to [Sasena2002] is the expected violation (EV) method Audet2000: The
optimization is carried out by filling the design space using latin hypercube sampling and
filtering out infeasible candidate points using the so-called EV function, which takes the
same form of El. Essentially, the constraint surrogates ¢**" are replaced by

Cgev(c®™,d).

The other type is the indirect approach, which is further divided into two categories, as
discussed in [Gelbart2015]. In the first category, the constrained problem is converted to
an unconstrained one using classical (non-BO) methods. Three representative
approaches are,

1. Barrier methods: The iterates are prevented from leaving the feasible region by
augmenting the objective function with a barrier function, which causes the
objective to grow to infinity at the boundary of the feasible region.

2. Penalty methods: The objective function is augmented with a penalty term, which
still allows the iterates to leave the feasible region but the iterates become feasible
as the penalty increases to infinity in the process of optimization.

3. Augmented Lagrangian methods: The problem is solved via the Lagrangian form
augmented with the extra term in penalty methods, while the Lagrangian multipliers
are controlled by the penalty parameters.

In the second category of indirect approach, the acquisition function is modified to
incorporate the constraint surrogates. two representative approaches are,

1. Modified El methods: An example is the El with constraints (EIC) Schonlau1998. The
El for the objective function is augmented to take account of the constraints. In EIC,
the El is multiplied by the probability that the constraints are satisfied, so that the
improvement (almost) only occurs at feasible candidate points.

2. Marginalization integral (MIl) methods: Examples are integrated expected conditional
improvement Gramacy2011 and expected volume minimization Picheny2014. The
acqusition function at d is defined using an integral over the whole design space,

Crur(d) = / F(d, d')h(d)dd

where F(d,d’) is a measure of improvement at d’ given observation at d and h(d’)
is the probability that the constraints are satisfied at d’. The maximizer of Cur
provides the best overall improvement in the design space. The inclusion of h(d)
encourages picking candidate points likely to be feasible, while still permits the
picking of points in infeasible region that may provide improvement over the whole
design space.

In terms of programming, the direct approach is probably the easiest one to implement.
Particularly, the non-BO indirect approaches may be applied to solve the subproblems
derived from the the direct approach, if standard packages for numerical optimization

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html 10/14

https://arc.aiaa.org/doi/pdf/10.2514/6.2000-4891
https://www.jstor.org/stable/4356058
https://www.researchgate.net/publication/45913547_Optimization_Under_Unknown_Constraints
http://proceedings.mlr.press/v33/picheny14.pdf

2/1/26,9:40 PM KGP_BO

are employed. The challenge in the MI methods is the integration over the design space,
which could be intractable in higher dimensions.

Inner optimization step

With the surrogates and the acquisition function ready, one then proceeds to the inner
optimization step.

Choice of algorithm

No matter which algorithm is used, eventually the BO process boils down to a series of
non-convex optimization subproblems. It is hard to find the global optimum of a non-
convex function. One choice is to use the evolutionary algorithms, or some so-called
global algorithms like the DIRECT, which are claimed to be able to find the global
optimum given sufficiently many iterations. Another choice is to apply the algorithms for
convex optimization, especially the gradient-based ones, with multiple restarts.

Sometimes the latter is preferred. Both choices do not guarantee the convergence to
global optimum. The convergence rate of the former is much slower than the latter,
especially in high-dimensional space. In practice, multiple restarts usually result in a
good global sub-optimal point that is sufficient for the engineering purposes. A merit of
the former, though, is that some algorithms can handle disjoint feasible regions.

Gradients

If a gradient-based algorithm is employed in the inner optimization step, it is necessary
to compute the gradients of the surrogate and the acquisition function analytically (or
using automatic differentiation), instead of using finite difference. The latter could
destabilize the iterations of gradient descent near some "singularity" points at which the
GP model is ill-defined.

For example, the gradient of Cgr w.rt.d foro > 0Ois,

0Cpr Op
od ad

0
2(2) + 56(2) — CB(=)]
where one needs to know o and 9o
ad od”

Note that, in the trivial treatment of the multiple output case, the process variances 0']2c

of the output are determined independently. Therefore, it is sufficient to consider the
single output case. The mean and variance at a single point are, respectively,

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html 11/14

2/1/26,9:40 PM KGP_BO

m(x) = g7k, (x) + b’ h,(x)
o2 — [L 'k, (%)) + [R 7y, (x) — F7[L 'k, (x)]]]?

2
f
2 T T

¥ e1e1+e2e2

Il
Q

wherek, = K,, and h, = Hf and

b=R Q" (Ly,)
g=L"[L7}(y, - Hb)]

The gradient of the mean is computed in a straight-forward manner,

ox ox ox
ok, oh,
where . and o e obtained from the regression and mean functions, respectively.

The computation of the gradient of the variance is a little bit more involved,

— = —-2¢;L 2e; R — —FL " —
ox €1 ox + 28 ox ox
ok, Oh,,
= 2L T (Fr+e)f —% + 2r7
ox ox

—1 . . . e .
wherer = R "e,. The computation is organized so as to minimize the number of linear
solves of the triangular matrices.

Update surrogate step

Relearn rate of the surrogate

The training of the surrogates could become expensive as the number of samples
increases. Also, contrary to intuition, updating the hyperparameters of the surrogate at
every iteration may be unnecessary or even counterproductive Bull2011. A better
strategy is to introduce a relearn rate: Update the sample data set in the surrogate every
iteration, but update the hyperparameters every few iterations.

In practice, the effectiveness of this strategy depends on the quality of the surrogate
implementation. If the current hyperparameters are far off from the converged values,
keeping the current hyperparameters would reduce the convergence rate of the whole
BO algorithm.

Updating scheme for GPR

Formal, we set up the problem like this: Consider a scenario where a GP model is trained
using a large sample data set (/N points), and now suppose a few new samples (M

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html 12/14

http://www.jmlr.org/papers/v12/bull11a.html

2/1/26,9:40 PM

KGP_BO

points, M < N) are to be appended to the data set. The question is, if the existing
hyperparameters are kept, how to recomputing the coefficient matrices in GPR,
including L, F, Q and R, efficiently.

Strictly speaking, the addition of new samples will result in the recomputation of
everything, even though the hyperparameters remain the same: The std and mean of the
samples are modified, so is the correlation matrix K, and so are the follow-up matrix
decompositions. However, now that M < N, one can assume that the std and mean of
the new sample data set are the same as those of the old one. As a result, the portion of
K associated with the old sample data set remains the same, and the new coefficient
matrices can be computed via partial matrix decompositions, which could save
considerable amount of time - dropping from O(IN?) to O(N?).

The new covariance matrix is

K _ KSS KSTL
B K’I’LS KTL’I’L

where K, is the matrix associated with the old data set, whose Cholesky factor L is
known. Matrices K,,; = Kfn and K,,,, are due to the new samples. The Cholesky factor
L of K is obtained via the following procedure of partial Cholesky decomposition,

1. Cholesky decomposition: K,,,, = Lan.
2. Linear solve: L, = Ls_len

3. Assemble the Cholesky factor,

Next, the new F matrix is

porm- | O U T
SRl PR B =) PRV

sn

where block matrix inversion is used and F;, = L *H, is known from the old model.

Finally, since Fs = QR is known, one can utilize the QR update algorithm to obtain
the QR decomposition of F'. Such algorithm has been implemented in standard
packages for scientific computation, such as scipy.linalg.qr_insert.

With the new coefficient matices L, F, Q and R, the GP model is updated with the new
sample data set.

Final note

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html 13/14

https://en.wikipedia.org/wiki/Block_matrix#Block_matrix_inversion
http://www.ams.org/journals/mcom/1976-30-136/S0025-5718-1976-0431641-8/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_insert.html

2/1/26,9:40 PM KGP_BO

To be fair, it is worth mentioning the existence of adjoint-based optimization. This
methodology applies to optimization problems constrained by partial differential
equations (PDEs). One can incorporate the adjoint capability in their PDE solver and
enable the direct gradient calculation of the expensive objective and constraint
functions. This approach applies to optimization problems involving CFD and FE solvers.
The adjoint method would be a different (but interesting) story that will be discussed in
the next module.

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html 14/14

