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from __future__ import division
from warnings import filterwarnings
filterwarnings('ignore')

import random
import numpy as np
import scipy as scp
import scipy.stats
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
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Introduction

The problem

The objective function is expensive to compute when it is, for example, the lift-to-drag

ratio of an aircraft wing using a computational fluid dynamics (CFD) solver, or nonlinear

deformation of composite structure using a finite element (FE) solver. The objective

function is impossible to compute when it is, for example, data obtained from

experiments.

The optimization problem is written formally as,

where  is the vector of design variables,  and  are the aggregated equality and

inequality constraint functions, respectively. The state variables  are those implicitly

involved in the evaluation of the objective and constraint functions. Examples of  are

the flow variables in a CFD solver or the displacement field in the structural FE solver.

arg mind J(d; U)

s. t. cE(d; U) = 0

cI(d; U) ≥ 0

d cE cI

U

U
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In above cases, in order to solve the optimization problem during a practical time period,

the number of evaluation of the objective function has to be limited in the optimization

algorithm. There are two limitations on the optimization algorithm:

The design space cannot be explored by carrying out numerous direct evaluation of

the objective function;

The derivative of the objective function w.r.t. design variables cannot be computed

using the finite difference approach.

These limitations prevent the direct application of any gradient-free or gradient-based

algorithms to the optimization problem.

Surrogate-based optimization

To overcome the limitations, one approach is to use surrogate-based optimization

(SBO). The SBO algorithms typically contain two key ingredients, a surrogate model

and an acquisition function. The surrogate model is employed to approximate the

expensive objective function. Since the surrogate is computationally efficient, it allows

for fast evaluation of approximated objective function as well as its derivative w.r.t. the

design variables. The acquisition function is a criterion for selecting the points in the

design space that is potentially a solution to the optimization problem. The acquisition

function is designed to take into account of both exploration, i.e. sampling from areas of

high uncertainty, and exploitation, i.e. sampling from areas likely to contain the

minimizer of the objective function.

The general procedure of SBO is as follows,

1. [Initialize dataset] Generate a sample data set  by

evaluating the objective and constraint functions  at a few sample points

 in the design space.

2. [Initialize surrogate] Generate surrogates , ,  using the

sample data set .

3. [Inner Optimization] Find the design point  by solving an optimization problem

that consists of the surrogates and an acquisition function .

4. [Acquire new data] Evaluate the objective and constraint functions  at

the new design point .

5. [Update surrogate] Update the surrogate using the sample data set augmented

with the new design point .

6. [Loop] Repeat steps 3-5 until the convergence or stopping conditions are reached.

D = {(di, Ji, cEi, cIi)}Ns

i=1

Ji, cEi, cIi

di

J sur(d) csur
E

(d) csur
I

(d)

D

d
∗

C

arg mind C(J sur, d)

s. t. csurE (d) = 0

csurI (d) ≥ 0

J ∗, c∗
E, c∗

I

d∗

D∗ = D ∪ {(d
∗, J ∗, c∗

E, c∗
I)}
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One category of SBO is the one-shot approach, which only contains steps 1-4. In the

one-shot approach, the acquisition function is the surrogate itself. The issue is that the

initial sample set does not necessarily represent well the distribution of the objective

function over the whole design space. As a result, the optimal solution found by the

algorithm may be far off from the true value of objective function. The other category of

SBO is the updating approach that, of course, contains all the six steps. This is the

category where the Bayesian optimization lies.

Bayesian optimization

Concepts

Bayesian optimization (BO) is essentially the six-step SBO procedure with a statistical

interpretation. Adapted from wikipedia: The expensive function is treated as a random

function with a prior distribution, which captures the beliefs about the behavior of the

function. The prior distribution is updated using the data set to form the the posterior

distribution over the objective function. The posterior distribution is used to construct an

acquisition function that determines the next design point.

The two precursors of BO are Kushner1964 and Mockus1975. A good review of BO is

provided in Brochu2010. The Gaussian process regression (GPR) model is a popular

choice for the surrogate model in BO. Some outstanding the GPR-based BO algorithms

include, but not limited to,

1. BayesOpt: code, doc, paper.

2. HIPS/spearmint: code.

3. GPyOpt: code, doc

4. GPflowOpt: code, doc, paper

Besides GPR, there are BO algorithms using other surrogate models, such as those in

SMAC (code, paper). A list of implementations of BO is provided here. Finally, note that

in the engineering community, the BO algorithm tends to appear by the name efficient

global optimization (EGO) algorithm Jones1998, Sasena2002.

Next, the key components of BO, the surrogate model and the acquisition function, as

well as the treatment of constraints will be discussed.

Surrogate model

In this and the following sections, the discussion will be based on the GPR model. The

prediction of the GPR model at a new design point  follows a Gaussian probability

distribution,

d∗
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where  is the predicted value of objective function and  is the variance, i.e. the

uncertainty of the prediction. The details of GPR models have been discussed in the

previous articles and will be skipped.

Acquisition function for unconstrained optimization

The BO is initially developed for unconstrained problems. Surveys of acquisition

functions for such problems can be found in, for example, [Sasena2002] and

Gelbart2015. There are three basic acquisition functions: (1) Probability Improvement

(PI) [Kushner1964], (2) Expected Improvement (EI) Mockus1994, Lizotte2008, (3) Lower

Confidence Bound (LCB) Cox1992. Besides the basic ones, there are acquisition

functions based on Thompson Sampling and the information theory (entropy). In

general, the acquisition functions are evolving towards (1) finding multiple candidate

points in one iteration, (2) taking advantage of parallel computing via techniques like

asynchronization. Nonetheless, this article will focus only on the three basic acquisition

functions.

PI

Defined as the probability of the new design point  to offer a better value of the

objective function  than the minimum objective function in the sample data set

.

EI

Defined as the expectation of the improvement in the objective function at the new

design point. In the literature, EI has been generalized to include user-specified

parameters that control the exploitation-exploration trade-off. The generalized EI is

written as,

where  and  are the user-specified parameters. The classical form of EI is

obtained with  and . A larger  or  will put more weight on the exploration.

Note that when  and , EI reduces to PI. For a GPR model, the closed-form

expression is available for . For the case ,

J ∗ = J sur(d∗) ∼ N (μ(d∗),σ2(d∗)), or P(J sur = J ∗) = exp(−
1

√2πσ2

(J ∗ − μ)

2σ2

μ σ2

d∗

J ∗

Jmin = min{Ji}

CPI(d∗) = P(J ∗ ≤ Jmin)

CEI(d
∗) = E[I(d

∗)], I(d) = max(0, (Jmin − J sur(d) − ζσ(d))g)

ζ ≥ 0 g ≥ 1

ζ = 0 g = 1 g ζ

ζ = 0 g = 0

CEI g = 1

2/1/26, 9:40 PM KGP_BO

file:///Users/daninghuang/Repos/EngiML_dev/KGP_BO.html 8/14

https://dash.harvard.edu/handle/1/17467236
https://link.springer.com/article/10.1007/BF01099263
http://www.csd.uwo.ca/~dlizotte/publications/lizotte_phd_thesis.pdf
https://ieeexplore.ieee.org/document/271617/


where , and  and  are the cummulative distribution and probability

density functions, respectively.

LCB

Defined using the LCB concept,

where the probability of  is a constant controlled by the user-specified

parameter . A larger  will put more weight on the exploration. The gradient of

 w.r.t.  is straight-forward.

Discussion

The PI acquisition function is purely exploitation, which is undesirable for global

optimization. The EI and LCB acquisition functions are high when  approaches the

optimum point, or the uncertainty of  is high. Therefore, both  and  achieve

a balance between exploitation and exploration.

The exploitation-exploration trade-off of EI and LCB functions can be further tuned by

the cooling scheme. In the cooling scheme, the optimization starts with a large user-

specified parameter for more exploration and gradually decreases the parameter to

focus on exploitation. However, the effect of this scheme is controversial [Sasena2002]

and [Brochu2010].

Treatment of constraints

The acquisition functions discussed in the previous section work well with optimization

problems without constraints or with box constraints only. For more complex constraints,

there are two types of treatments. The first type is the direct approach. As suggested in

[Sasena2002], the objective and constraint functions are replaced with the surrogates,

and the following problem is solved,

CEI(d
∗) = ∫

∞

0
IP(J sur = Jmin − ζσ − I)dI

= {σ[zΦ(z) + ϕ(z)], σ > 0

0, σ = 0

z =
Jmin−ζσ−μ

σ Φ ϕ

CLCB(d∗) = μ(d∗) − ζσ(d∗)

J sur < CLCB

ζ > 0 ζ

CLCB d

J ∗

J ∗ CEI CLCB

arg mind C(J sur, d)

s. t. csurE (d) = 0

csurI (d) ≥ 0
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Similar to [Sasena2002] is the expected violation (EV) method Audet2000: The

optimization is carried out by filling the design space using latin hypercube sampling and

filtering out infeasible candidate points using the so-called EV function, which takes the

same form of EI. Essentially, the constraint surrogates  are replaced by

.

The other type is the indirect approach, which is further divided into two categories, as

discussed in [Gelbart2015]. In the first category, the constrained problem is converted to

an unconstrained one using classical (non-BO) methods. Three representative

approaches are,

1. Barrier methods: The iterates are prevented from leaving the feasible region by

augmenting the objective function with a barrier function, which causes the

objective to grow to infinity at the boundary of the feasible region.

2. Penalty methods: The objective function is augmented with a penalty term, which

still allows the iterates to leave the feasible region but the iterates become feasible

as the penalty increases to infinity in the process of optimization.

3. Augmented Lagrangian methods: The problem is solved via the Lagrangian form

augmented with the extra term in penalty methods, while the Lagrangian multipliers

are controlled by the penalty parameters.

In the second category of indirect approach, the acquisition function is modified to

incorporate the constraint surrogates. two representative approaches are,

1. Modified EI methods: An example is the EI with constraints (EIC) Schonlau1998. The

EI for the objective function is augmented to take account of the constraints. In EIC,

the EI is multiplied by the probability that the constraints are satisfied, so that the

improvement (almost) only occurs at feasible candidate points.

2. Marginalization integral (MI) methods: Examples are integrated expected conditional

improvement Gramacy2011 and expected volume minimization Picheny2014. The

acqusition function at  is defined using an integral over the whole design space,

where  is a measure of improvement at  given observation at  and 

is the probability that the constraints are satisfied at . The maximizer of 

provides the best overall improvement in the design space. The inclusion of 

encourages picking candidate points likely to be feasible, while still permits the

picking of points in infeasible region that may provide improvement over the whole

design space.

In terms of programming, the direct approach is probably the easiest one to implement.

Particularly, the non-BO indirect approaches may be applied to solve the subproblems

derived from the the direct approach, if standard packages for numerical optimization

csur

CEV (csur, d)

d

CMI(d) = ∫ F(d, d
′)h(d

′)dd
′

F(d, d
′) d

′
d h(d

′)

d′ CMI

h(d)
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are employed. The challenge in the MI methods is the integration over the design space,

which could be intractable in higher dimensions.

Inner optimization step

With the surrogates and the acquisition function ready, one then proceeds to the inner

optimization step.

Choice of algorithm

No matter which algorithm is used, eventually the BO process boils down to a series of

non-convex optimization subproblems. It is hard to find the global optimum of a non-

convex function. One choice is to use the evolutionary algorithms, or some so-called

global algorithms like the DIRECT, which are claimed to be able to find the global

optimum given sufficiently many iterations. Another choice is to apply the algorithms for

convex optimization, especially the gradient-based ones, with multiple restarts.

Sometimes the latter is preferred. Both choices do not guarantee the convergence to

global optimum. The convergence rate of the former is much slower than the latter,

especially in high-dimensional space. In practice, multiple restarts usually result in a

good global sub-optimal point that is sufficient for the engineering purposes. A merit of

the former, though, is that some algorithms can handle disjoint feasible regions.

Gradients

If a gradient-based algorithm is employed in the inner optimization step, it is necessary

to compute the gradients of the surrogate and the acquisition function analytically (or

using automatic differentiation), instead of using finite difference. The latter could

destabilize the iterations of gradient descent near some "singularity" points at which the

GP model is ill-defined.

For example, the gradient of  w.r.t.  for  is,

where one needs to know  and .

Note that, in the trivial treatment of the multiple output case, the process variances 

of the output are determined independently. Therefore, it is sufficient to consider the

single output case. The mean and variance at a single point are, respectively,

CEI d σ > 0

= − Φ(z) + [ϕ(z) − ζΦ(z)]
∂CEI

∂d

∂μ

∂d

∂σ

∂d

∂μ

∂d

∂σ
∂d

σ2
f
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where  and  and

The gradient of the mean is computed in a straight-forward manner,

where  and  are obtained from the regression and mean functions, respectively.

The computation of the gradient of the variance is a little bit more involved,

where . The computation is organized so as to minimize the number of linear

solves of the triangular matrices.

Update surrogate step

Relearn rate of the surrogate

The training of the surrogates could become expensive as the number of samples

increases. Also, contrary to intuition, updating the hyperparameters of the surrogate at

every iteration may be unnecessary or even counterproductive Bull2011. A better

strategy is to introduce a relearn rate: Update the sample data set in the surrogate every

iteration, but update the hyperparameters every few iterations.

In practice, the effectiveness of this strategy depends on the quality of the surrogate

implementation. If the current hyperparameters are far off from the converged values,

keeping the current hyperparameters would reduce the convergence rate of the whole

BO algorithm.

Updating scheme for GPR

Formal, we set up the problem like this: Consider a scenario where a GP model is trained

using a large sample data set (  points), and now suppose a few new samples (

m(x) = ḡTku(x) + b̄
T

hu(x)

σ2(x) = σ2
f

− [L−1ku(x)]2 + [R−T [hu(x) − FT [L−1ku(x)]]]2

≡ σ2
f

− eT
1 e1 + eT

2 e2

ku = Ksu hu = H
T
u

b̄ = R
−1[QT (L

−1
ys)]

ḡ = L−T [L−1(ys − Hb̄)]

= ḡT + b̄
T∂m

∂x

∂ku

∂x

∂hu

∂x

∂ku

∂x

∂hu

∂x

= −2e
T
1 L−1 + 2e

T
2 R−T ( − FTL−1 )

= −2[L−T (Fr + e1)]T + 2rT

∂σ2

∂x

∂ku

∂x

∂hu

∂x

∂ku

∂x

∂ku

∂x

∂hu

∂x

r = R−1e2

N M
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points, ) are to be appended to the data set. The question is, if the existing

hyperparameters are kept, how to recomputing the coefficient matrices in GPR,

including , ,  and , efficiently.

Strictly speaking, the addition of new samples will result in the recomputation of

everything, even though the hyperparameters remain the same: The std and mean of the

samples are modified, so is the correlation matrix , and so are the follow-up matrix

decompositions. However, now that , one can assume that the std and mean of

the new sample data set are the same as those of the old one. As a result, the portion of

 associated with the old sample data set remains the same, and the new coefficient

matrices can be computed via partial matrix decompositions, which could save

considerable amount of time - dropping from  to .

The new covariance matrix is

where  is the matrix associated with the old data set, whose Cholesky factor  is

known. Matrices  and  are due to the new samples. The Cholesky factor

 of  is obtained via the following procedure of partial Cholesky decomposition,

1. Cholesky decomposition: .

2. Linear solve: 

3. Assemble the Cholesky factor,

Next, the new  matrix is

where block matrix inversion is used and  is known from the old model.

Finally, since  is known, one can utilize the QR update algorithm to obtain

the QR decomposition of . Such algorithm has been implemented in standard

packages for scientific computation, such as scipy.linalg.qr_insert.

With the new coefficient matices , ,  and , the GP model is updated with the new

sample data set.

Final note

M ≪ N

L F Q R

K

M ≪ N

K

O(N 3) O(N 2)

K = [ Kss Ksn

Kns Knn

]
Kss Ls

Kns = K
T
sn Knn

L K

Knn = LnL
T
n

Lsn = L−1
s Ksn

L = [ Ls O

L
T
sn Ln

]
F

F = L
−1

H = [ Ls O

L
T
sn Ln

]
−1

[ Hs

Hn

] = [ Fs

L−1
n (Hn − LT

snFs)
]

Fs = L−1
s Hs

Fs = QsRs

F

L F Q R
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To be fair, it is worth mentioning the existence of adjoint-based optimization. This

methodology applies to optimization problems constrained by partial differential

equations (PDEs). One can incorporate the adjoint capability in their PDE solver and

enable the direct gradient calculation of the expensive objective and constraint

functions. This approach applies to optimization problems involving CFD and FE solvers.

The adjoint method would be a different (but interesting) story that will be discussed in

the next module.
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